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ABSTRACT 

By associating with an attine dependence the resultant of a related probability 
measure, we are able to define the set of divisible points, D(K), of a compact 
convex set K. Some general properties of D(K) are discussed, and its 
equivalence with a set recently introduced by Reay for convex polytopes 
demonstrated. For polytopes, D(K) is a continuous image of a projective space. 
A conjecture concerning D(K) is settled affirmatively for cubes. 

1. Introduction and definitions 

Within every compact convex set K in a real Hausdortt  locally convex space E 

we will show that there exists, in a natural way, a subset D (K) termed the set of 

divisible points of K. In Section 2, Theorem 1, we demonstrate the part these 

divisible points play in determining aspects of the structure of K. Section 3 

specializes to the case in which K is a convex polytope, where it is shown that 

D ( K )  coincides with a set recently introduced by Reay in [14]. Our novel view of 

this set allows us to present an unexpected result concerning its structure 

(Theorem 2). Finally (Theorem 3) we confirm a conjecture made by Reay 

concerning divisible sets, for the special instance of cubes in finite dimensions. A 

variety of examples, including the Hilbert cube, are discussed in Section 4. The 

paper serves to relate certain ideas, which have arisen in the study of infinite 

dimensional convexity, to recently introduced finite dimensional notions. 

We follow the notation established by Alfsen in [3]. Throughout,  all measures 

will be in M ( K ) ,  the dual space of the Banach space of all continuous real-valued 

functions on K. These are termed the Radon measures on K, and can be 

identified with all totally finite, regular, signed Borel measures on K, with 
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II ~ II = I~ I(K) for/z  E M(K). Let M÷(K) be all positive measures in M(K) and 

M~(K) be all probability measures on K, that is, measures /z ~ M+(K) with 

~ ( K )  = 1. 

A measure/~ ~ M(K) is said to be a boundary measure if I/~ I is a maximal 

element of M÷(K) with respect to Choquet's ordering < (if t~ , /z 'EM÷(K) ,  

then/z < / z '  if/z (f) =</z'(]) for all real valued continuous and convex functions f 

on K). For a metrizable compact convex set K, /z  is a boundary measure if and 

only if it vanishes of[ the measurable set c~,K (the set of extreme points of K). 

Let Z(K) denote all boundary measures on K, Z~(K) all boundary measures in 

M~i(K) and Z+,(K) all boundary probability measures with resultant x ~ K. 

Recall that the resultant of /z  E M(K) [4, Definition 26.2] is x (denoted r(/z)) if 

and only if fxf(z)diz = f(x) for all f E E*, the dual of the real Hausdorf[ locally 

convex space E (written E ~ LCS). An afline dependence v on K is a signed 

boundary measure with v(K) = 0 and r(v) = 0, the origin of E. Let N(K) denote 

the linear space of all such affine dependences on K. 

For the benefit of the reader familiar only with finite dimensional convexity, 

we give an explicit description of Z~i(K), Z+,(K) and N(K) for x E K, a convex 

polytope with extreme points xl , . . . ,x, ,  : 

Z ; ( K )  = ~ l , . . . , ~ m ) ~ / ~ :  m = 1 and m -->0for i = 1 , . . . ,m , 

{ 2 } Z2(K) = (a, . . . .  , ~ , )  ~ Z~(K):  a,x, = x , and 

N(K)= , , , = 0  and t a x i = 0 ,  

where l~' denotes the set of m-tuples of reals, (al . . . . .  am), with 

m 

 .)ll = I. 

It is readily shown for any compact convex set K that Z~+(K) = 

Z~(K) fq (/z, + N(K)), where /z, E Z+(K). 
Finally, lin X and af[ X denote the linear and affine spans of X C_ E, while 

dim M denotes the dimension of a linear or affine manifold M of E. 

2. Divisible points and their role 

It is well known that every boundary probability measure on a compact 

convex set K is associated with an element of K:  with each /z ~E Z~i(K) we 
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associate the weak/z-integral,  fr  xdtt, the barycenter or resultant r(lz) of ~ [3, p. 
10, Proposition 1.2.1]. That this mapping from Z~(K) to K is onto is the content 
of the Choquet -Bishop-de  Leeuw theorem [3, p. 36, Theorem 1.4.8]. 

In an equally natural fashion we can associate an element of K with each 

one-dimensional subspace of N(K), in the following way. Take a non-zero affine 

dependence, v, and consider the Jordan decomposition v = v ÷ -  v-. Since 

v(K) = 0 and vy/0  we have v÷(K) = v-(K) ~ 0, so v÷/v+(K) and v-~v-(K) are 

boundary probability measures with identical resultants. While these calcula- 

tions were used by Alfsen in the proof of the theorem in [2], the essence of the 

method is contained in Raclon's paper of 1921 [13]. For this reason we shall refer 

to the common resultant, w say, as the Radon-resultant (or R-resultant) of v, 

and write v =vw or R(v)= w. Since, as noted earlier, Choquet  defines the 

resultant for any measure in M(K) as the weak integral of the identity function 

on K this avoids possible confusion. Observe that if v' is a non-zero real multiple 
of v EN(K), then R(v')=R(v).  

DEFINITION. Let K be compact and convex in E E LCS. Then D(K), the 
divisible set of K, is given by 

D (K) = {R (v): v is a non-zero element of N(K)}. 

Elements of D (K) we term divisible points of K. 

The following proposition indicates that D(K) is a non-empty subset of 
K\a,K, as long as K is not a simplex. 

PROPOSITION 1. (i) D(K) = 0 i[ and only i[K is a simplex. 
(ii) D ( g )  C_ K\d,K (so [or non-empty K, D (K) is always a proper subset o[ K). 

PROOF. Statement (i) follows since N(K) = {0} if and only if K is a simplex. 

For (ii) suppose x • D(K) .  Then there exist distinct elements in Z+~(K) so 

x ~  ~,K, since x E c~,K if and only if Z+,(K)= {e,}, where ex is the point mass at 
X. 

A pair of non-attinely isomorphic polytopes can have identical divisible sets. 

For example, the cyclic polytope and the stacked polytope in R', each with six 

extreme points, are not attinely isomorphic [6]. However,  the afline dependences 

of each are one-dimensional, so the divisible sets are singletons. Nevertheless, 

D(K) does play a central role in determining each Z+,(K) set. Recall that 

Z+~(K)=Z~(K)N(I~x+N(K)), where /zx E Z,+(K), so we always have 

afIZ;(K)_C/~x + N(K). The manner in which D ( K )  produces the attine sub- 

manifold of tz, + N(K) equal to aff Z+~(K) is the content of Theorem 1. 
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We pause to recall one more concept before this is presented: the smallest face 

of K containing x E K is denoted by face(x) and equals 

{w E K : there exists an e > 0 such that x + e (x - w) C K}. 

See [3, p. 121]. 

THEOREM 1. 

lZ, E Z+~(K). I[ 

then 

Let K be a compact convex subset of E E LCS, x E K and 

Ax = {vw : w E D(K)  and w E face(x)}, 

att Z+~(K) =/zx + lin A~. 

PROOF. We will verify the following two statements: 

(i) if A . ~  0 ,  then lin(Z~+(K) - Z+~(K))= lin A., and 

(ii) if Ax = 0 ,  then Z+~(K) is a singleton. 

Since for any subset S of E and s ~ S we have affS = s + l i n ( S - S ) ,  the 

theorem will follow. 

In order  to show (i), suppose A x # O  and take v ( =  vw) in Ax. Let ,~+= 

v+/v+(K) and ,~- = v-~v-(K) in the usual way. Since w E face(x) we can find a 

y E K  such that x = a w + ( 1 - a ) y  with a E(0,1].  Choose "cEZ;(K).  Then 

/z~ = a)t + + (1 - a)r  and it2 = a,~- + (1 - a ) r  are both boundary probability 

measures with barycenter x. Also 

v = v+(K)(X + - A-) = v+(K)( t t , -  Iz~) 
Ol 

so v lies in l in(Z,*(K)-  Z*,(K)) and lin Ax C_ lin(Z~*(K)- Z*~(K)). 

For the reverse inclusion, take distinct #1 and tt2 in Z*~(K), possible via the 

previous argument. Consider the affine dependence v = tt~ - g2 and let w be its 

R-resultant.  In order to show that lin(Z~+(K) - Z*~(K))C_ lin Ax it suffices to 

show that w E face(x). Let  A U B be the Hahn decomposition of K with respect 

to v and v + -  v- be the associated Jordan decomposition of v. As before, let 

3~ += v+/v+(K) and ) t - =  v-~v-(K). 
With F an arbitrary measurable subset of K, certainly v+(F)>O, so 

/zx(A O F)  > tz2(A O F). Now suppose F is such that /z~(A O F ) > 0 .  Then 

/z,(F) > / z , ( A  n F)  > O, so 
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A +(F) _ v+(F) 
tz,(F) - Iz,(F)u+(K) 

: [ I ~ , ( A A F ) - I ~ z ( A A F ) ]  1 
tz,(F) v+(K) 

< [ / ~ , . ( A N F ) - / ~ z ( A A F ) ]  1 
= [ /z,(A n F)  J u+(K) 

= [ l _ / ~ 2 ( A  n F ) ]  1 
tz,(A n F) u+(K) 

1 
<= v+(K ) < oo. 

Thus for all such F there exists an a > 1 for which 

A+(F)< a 
~ , ( F ) =  a - 1" 

All remaining measurable F are such that ~,(A n F ) = O .  In this event 

/.t2(A n F)  = 0 so 

u +(F) _ _ _  
A+(F) = v+(K) 

whence we certainly have 

1 
- _ . + ~ [ / z , ( A  N F ) -  lz2(A n F) ]  = 0, 

u t a x )  

We conclude that ( 1 -  a)A +(F)+ al.tl(F)>= 0 for all measurable sets F in K. 

Thus ~" = (1 - a )A++ attt  is a boundary probability measure on K with bary- 

center (1 - a ) w  + ax, so w E face(x). Since ~ - ~2 = v, l in(Z~*(K)- Z+~(K)) C_ 
lin Ax. 

For (ii), assume that there exist distinct tXl and tt2 in Z*~(K). The proof in (i) 

that v = ttl - tt2 with R-resultant  w is such that w E face(x) ensures A x #  0 .  

An illustration of the theorem is given after Example 2 in Section 4. 

We have already noted that every element of Z;(K) has resultant in K. We 

conclude this section with a characterization of those elements in ZI(K) whose 

resultants lie in D(K). Recall that IZ and A in ZI(K) are mutually singular 

(written tx~),) if there exists a partition A U B of K, such that for each 

measurable set F in K, A O F and B O F are measurable and /z(A n F ) =  

)t (B O F ) =  0. The one-to-one correspondence between one-dimensional sub- 

spaces of N(K) and pairs of mutually singular boundary probability measures 
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with the same resultant (in which (v÷/v+(K), v-~v-(K)) is associated with lin v, 

for each non-zero z, E N(K)) straightforwardly gives the following. 

PROPOSmON 2. Let P(K) be the set o[ tz E Z~(K) such that there exists a 
A ~Z~((K) with ItlA and r(/ . t)= r(A). Then 

D(K) = {r(It): ~ E P(K)}. 

REMARKS. (i) The Hahn decomposition A U B of K, associated with such a 

pair of mutually singular boundary probability measures with the same resultant, 

can be regarded as a generalisation of the longstanding finite-dimensional notion 

of a Radon partition [6], since c---o A O ~ B #  O. We explore this relationship 

further in the next section. 

(ii) A means of determining all such Hahn decompositions for certain 

ot-polytopes is given in [9]. The tool used is the Gale transform of the 

ot -polytope. 

3. Finite dimensional results 

In [14, p. 241] Reay introduced the 2-divisible points of a convex polytope K 

in R". These are the points x ~ K for which there exists a partition S U T of ,9,K 

such that x E co S O co T. Reay calls this set D2(&K). Radon's theorem [13] 

then asserts that for K in R" with n + 2 extreme points, D2(&K) ~ 0 .  

PROPOSmON 3. Let K be a convex polytope in R". Then D2(&K) = D(K). 

PROOF. Take x E D2(&K). Then x E co S O co T for some partition S U T 

of &K. Since x E co S, x = r (#)  for some probability measure It such that 

It(K\S) = 0. Any such measure vanishing off &K is a boundary measure [3, p. 
35, 4.11] so/~ E Z+x(K). Similarly, there exists a A E Z+x(K)for which A (K \ T) = 

0. Certainly ~lA so D2(OeK) E D(K), using the characterization given in 

Proposition 2. 
Now take x E D(K). From Proposition 2 we know there exists a mutually 

singular pair of probability measures on OeK, It and A, each with barycenter x. 

Here we are again using the fact that boundary probability measures vanish off 

&K. Thus there is a partition S U T  of &K with # ( T ) = A ( S ) = 0 .  Since 

r(It) = x, we have x E c o S ,  and similarly x E c o  T. 

Knowing now that D2(&K) is the locus of R-resultants of affine dependences, 

we are able to present a theorem which indicates that this set has a surprising 

structure. In the sequel, we revert to the notation D(K) for this set. 

Let pm be projective m-space. That is, pm is the unit sphere in R "÷1, S '~, with 
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antipodal points identified, equipped with the quotient topology. Note that for 

every convex polytope K in R", dim N ( K ) <  ~. See for example [1. p. 100]. 

THEOREM 2. Let K be a convex polytope in R" and suppose dim N(K)  = d. 

Then D(K)  is a continuous image of W -~. 

PROOF. It is readily checked that the relation O on N(K)\{0}, given by 

(v, z,')E p if and only if u = au' for some a E R, is an equivalence relation. 

Define a map /~  from (N(K)\{O})/p to K by/~([v])  = R(u), where [v] denotes 

the equivalence class of u. This map is well-defined since if v = av '  and a E R, 

then R(v)  = R(v'). 
Suppose I 0,KI = m. Then Z ( K )  is isomorphic to l?, the space of m-tuples of 

real numbers equipped with the 1-norm. Let S "-~ be the unit sphere in l?. Now 

D(K)  = R ( ( N ( K ) N  S ' - l ) lo)  and (N(K)fq S"-~)lo is certainly homeomorphic 

to W -1. By [8, p. 95, Theorem 9] it suffices to show R on N ( K ) A  S "-1 is 

continuous. 

Let ui tend to v, in N ( K ) N  S "-x, as i tends to infinity. Let O,K = {x~,...,x,,}, 
~,~ = (a~ . . . . .  a~,,), z, = (a~ . . . . .  a,,) and suppose, without loss of generality, that 

a~ . . . .  , a~ are the strictly positive components of u while ap.~,..., aq are the zero 

components. Provided aj is non-zero, all a~j have the same sign as a~, for 

sufficiently large values of i. For j = p + 1, . . . ,q  let 

+ { ~,-j if a~j => 0, 
a #  = 

if a~j < 0, 
SO 

v + = (a ,  . . . . .  a,p, a ,~p+l) . . . . .  a~,0, . . . ,0).  

Hence 

aijx~ +i~ ~ a°xj aq = ~ aq 

which converges to (E~=I ajxj)lY~=~ aj = R (v) as i---~ ~. This follows since aij--~ aj 

for j = 1 , . . . ,p  and a~--->0 for j = p + 1,. . . ,q, as i--->oo. 

We highlight the following consequences of Theorem 2. 

COROLLARY 1. Let K be a convex polytope in R". Then 

(i) D(K)  is closed and connected, and 
(ii) if l aeKI = m, D (K) is a continuous image of pro-.-2. 
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PROOF. Immediately we have (i), while (ii) follows since N(K)  has dimension 

m - (n + 1) for such a polytope. 

In Problem 5 of [15] conditions are sought which ensure D(K)  is convex, and 

it is conjectured that for convex polytopes in R", co D(K)  = C(K), where C(K) 
(termed the 2-core in [15]) is defined as follows: 

C(K) = n {co T: T C_ O,K and I(O,K)\ T I = 1}. 

The question of the dimension of the affine span of C(K) is also raised. 

In the next theorem we show that for cubes of any finite dimension, D(K)  is 

convex and equals C(K). It will also follow that att C(K) has dimension n, for 

n_->3. 

For convenience, we define a standard cube in R", 

K ={x = (x ,  . . . .  , x , ) ~ R "  :max{lx, l , . . . , lx ,  I}_ -< 1}, 

the closed unit ball using the supremum norm. General  cubes are treated in the 

corollary. It can be verified that 

O,K = V = {x ~ R" : x~ = -+ 1 for each i}. 

THEOREM 3. Let K be the standard cube in R". then 

D ( K ) = C ( K ) = K A  x E R " :  [ x , l = < n - 2  . 

PROOF. If n = 1 all three sets are empty, while if n = 2 all are the origin of R 2. 

We assume n ~ 3 in the remainder,  and present the proof in three steps: 

(1) C ( K ) = K O { x  E R "  I---- n -2} ,  

(2) O,C(K)={x E R "  :l{i:x, =0} I = 2  and I{i:x, = + l } l  = n -2} ,  

(3) D(K)= C(K). 

PROOF OF (1). For each v ~ V and x E R "  define [v(x)=(x,v),  the usual 

inner product. For brevity we write V\{o} as V\v. 
We claim co(V\v)  = K nf~l ( -oo ,  n - 2 ] ,  for each v G V. Now [v(v~)<= n - 2  

for each v i~  V\v, since v~ and v have at least one component with opposite sign, 

whi le /o (v)  = n, so v n f ~ l ( - o o ,  n - 2 ]  = V\v. 

Thus 

K n f ~ ' ( -  ~, n - 2] = co[(V n f ; ' ( -  ~, n - 2)) U (K n f;"({n - 2}))] 

= CO[(V n / : l ( _  oo, n - 2)) U ( V  n f:'({n - 2}))], 

since K O f~'({n - 2}) = co{v' E V :(v', v) = n - 2}. Hence 
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K n f ~ ' ( -  oo n - 2] : c o ( V  n f : ' (  - c0, n - 2])  

= co (V\v ) .  

Finally, 

C ( K ) =  n c o ( V \ v )  
o ~ V  

= K n  n f ? ( -  ~, ,, - 2] 
v ~ V  

= K n { x  ER" :Ix, l + - . .  + I x . l =  < n -21. 

Proof of (2). Let  F deno te  the right hand set in the equali ty to be shown, and 

take x in F. Suppose ay  + (1 - a ) z  = x, where  y, z E C(K)  and a E (0,1). Then  

if x, = -+ 1, since t~y~ + (1 - a )z ,  = x, and l Y, I,I z, I=< 1, w e  must have y, = z, = x,. 
This occurs for  n - 2  co-ordinates ,  so the remaining co-ordinates  of x, y and z 

must be zero.  Thus  x = y = z and F C c~,C(K). 

Suppose now that x ~ C(K)\F. By considering two cases we show it cannot  be 

ext reme.  

(i) Case 2;L. Ix, l = n - 2 :  Without  loss of general i ty we may assume 

0 < I x ,  I, I x 2 1 < l ,  if not,  then ei ther  each componen t  is 0, + 1 or - 1 ,  whence  

x E F, or just one componen t  differs from these values, whence  El x, I # n - 2. 

Let  

e = min{Ix ,  I,Ix, - l l,lx, ÷ 11}, 
i = 1 ,2  

+ / x ~ + e  if x , > 0  
X i  ~ l x , - e  if x ~ < 0  

and 

{ x ~ - e  if x ~ > 0  
x~- = for  i = 1,2. 

x ~ + e  if x , < 0 ,  

Then  since e > 0, (x~,xZ, x~ . . . .  , x , )  and (x;,x~,x3 . . . .  ,x , )  are distinct points in 

C(K)  with mid-point  x. 

(ii) Case 2~'~1 Ix, I < n - 2: Here ,  without  loss of generali ty,  we may assume 

0=Ix ,  l<1.  If not,  then 2,"=,lx, l=n,  a contradict ion.  Choose  e such that 

O<e<min{ (n -2 ) -YT=, l x ,  l, l x , - l l ,  lx,+ll}.  Then  (x~+e, x2, . . . ,x .)  and 

(x~ - e, x2 . . . . .  x . )  are distinct points in C(K)  with x as their  mid-point .  

Proof of (3). It can be shown that  C(K)  is the intersect ion of all closed 

half-spaces which contain all or  all but  one  point  of V. Thus  if x ft. C(K),  x lies in 
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a closed half space containing at most one point of V. Hence x~D(K)  so 

D (K) C CtK). 
In order to show the reverse inclusion we present a partition S U T of &K 

such that &C(K), and hence C(K), is a subset of both co S and co T. It follows 

that C(K)C D(K) and the theorem is proved. Let 

S ={x E &K:l{i:x~ = 1}liseven} 
and 

T = {x E &K:I{i : x, = 1} I is odd} = (&K)\S. 

Now take x E &C(K), and suppose without loss of generality that x = 

(0,0,x3 . . . . .  x,), with x~=___l for i = 3  . . . . .  n. Then (1,1,x3 . . . . .  x.) and 

( -  1, - 1,x3 . . . . .  xn) both lie in the same set in the partition and have x as their 

mid-point. On the other hand, both (1, - 1, x3,..., x.) and ( - 1,1, x3 . . . . .  x.) lie in 

the opposite set of the partition, again with x as their mid-point. 

Note that since D(K) and C(K) are invariant under aftine isomorphism, we 

have the following corollary. 

COROLLARY 2. Let K' be af]inely isomorphic to the standard cube, K. Then 
D (g') = C(K'). 

4. Examples 

EXAMPLE 1. In [14, Lemma 6] Reay has the following result. Let K be a 

convex polytope in R 2 with m _-> 6 extreme points. Then D ( K ) =  C(K). 

EXAMPLE 2. Let K be a triangular prism, as shown in Fig. 1, with a, b and c 

the intersections of the diagonals of the three quadrilateral faces of K. It is 

readily checked that D (K) = co{a, b} U co{b, c} O co{c, a}, certainly 

homeomorphic to one-dimensional projective space, with Vo = 

( 1 , - 1 , 1 , - 1 , 0 , 0 ) ,  v ~ = ( 0 , 0 , 1 , - 1 , 1 , - 1 )  and vc = (1, -1 ,0 ,0 ,1 ,  - 1 ) .  If 

w E D ( K )  is a convex combination of a and b, say, then vw is the corresponding 

convex combination of va and vb. 

Jg2 
Fig. l. 
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This example can be used to illustrate Theorem 1. If x lies on a triangular face, 

or any edge, no element of D(K) lies in the face generated by x, so Z+~(K) is a 

singleton. For x in the relative interior of a quadrilateral face, one of a, b or c 

lies in face(x), so Z*~(K) will have afline span a translate of lin{v,}, lin{vb} or 

lin{vc} respectively. Finally, if x is in the interior of the prism, all points in D(K) 
are in face(x), so a f fZ+(K)  will be a translate of N (K )  itself. 

EXAMPLE 3. Take n _-> 2, and let K be the closed unit ball in R", with the 

usual topology. Then D(K) is the open unit ball. Since D(K) is open, this 

demonstrates that Corollary l(i) does not hold for arbitrary compact convex sets 

in R". 

EXAMPLE 4. We present here an example of an infinite dimensional compact 

convex set K in 11, the Banach space of all absolutely summable real sequences, 

together with D(K). Let 6. be the sequence whose nth term is one and all other 

terms are zero. Let x~ = & and x2, = 62, , / (2n- 1)+ 6~,/2n, x2~+~ = 
82./n + 62,+1/(2n + 1) for n _-> 1. Then xi ~ x0 = 0 in l~ as i--*~. Put X = {xi : i = 

0,1 . . . .  }, and K = c--oX, compact by [5, Theorem 6, p. 416]. By [11, p. 9], 

OeK C_ X. We indicate that each x E X is an exposed point of K, hence extreme. 

Recall that z E K is exposed if there exists an f ~ L, the dual of L, such that 

f ( x ) <  f(z) for all x E K\{z}. We say f exposes z in K. Since K lies in the 

non-negative cone of L, x0 is exposed by f E L for which every term is - 1. It is 

straightforward to show that if z E X has the property that there exists an f E l® 

and/3 E R  with f(x)<= fl < f ( z )  for each x EX\{z},  then f exposes z in K. For 

x~, i _-> 1, we can readily find such an f, and conclude that OeK = X. 
An affine dependence on K is an 11 sequence (a , )  such that Y~=o a ,  = 0 and 

~=0 a,x.  = 0, where the second series converges in 11. From the construction of 

X it follows that N(K)= l in{v} ,  where v=(0,½, 11 i1 - ~ , ~ , - ~ , ~ , - ~  . . . .  ). Since 

u+(K) = 1, the mutually singular boundary probability measures associated with 
1 1 1 1 1 v are v + = (0,~,0,~,0,~,...) and v- = (0,0,~,0,~,0,...). Hence D(K) contains the 

one point, 

r ( v + )  = ½,~, + 1  ,~ 1 11 1 ~(  ~ + ~,~) + ~(v~,, + ~,~,) + " ' "  

_ ( 1  1 1 1 1 1 ) 
1 . 2 ' 2 . 2 ' 3 . 4 ' 4 . 4 ' " " ( 2 n  1)2" ' (2n)2 " ' ' ' "  " 

Note that 

r ( v - ) = '  ~ , ,  ~ 1~ . . .  

= r(v+). 
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EXAMPLE 5. Let 

K = {(~,):lsc. I =< 1/n, for each n EN} 

= f i [ -  1/n, 1/n], 
n = l  

be the Hilbert cube in 12, where 12 denotes the Hilbert space of all square 

summable real sequences. See for example [10, p. 29]. Phelps [12, Proposition 

2.8] has shown that any infinite dimensional centrally symmetric compact convex 

set, such as the Hilbert cube, necessarily has N(K) infinite dimensional. This 

indicates, loosely speaking, that D(K) will be a large subset of K. It is a 

straightforward exercise to show that 

O,K = {(~.) : ~:. = -+ 1/n, for each n E N}, 

and interesting to note that O,K is homeomorphic to the Cantor set II~=~ { - 1,1}, 
under the natural map. 

We culminate this example with (iii) below, where we sandwich D(K) 
between a pair of subsets of the Hilbert cube. For this we need necessary and 

sufficient conditions for # E Z~(K) to have resultant x = (~,), given in (ii), which 

in turn hinges upon the result we now present. 

(i) (x,y)=f~,~(z,y)dlx(z) for each yE12 if and only if ( x , e , )=  

So,K (z, e.)d~ (z) for each n E N (where (x, y) denotes the inner product and (e,) 

the standard basis in 12). 
Since the necessity is immediate, take y = ( n . ) E l 2  and let f . ( z ) =  

Y~'=~n,(z,e~), for each n ~ N  and z EO, K. Choose r=(p,)EO, K such that 

P,n, = 0 for each i. Then 

2 2 f.(z)=~n,(z,e,)<= IT, I / iN n,(r,e,)=(r,y)--M<~,foreachnandz. 

Now ~ ( K ) =  1, so it follows from Lebesgue's Bounded Convergence Theorem 

that 

lim S~ f ,(z)d,  = f~ lim f.(z)d,. 
.K  eK n 

Hence 

(x,y)=(x,~= n.e.) 

= ~l n.(x,e.) 
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= ~ rl, lo,K (z,e,)dtz 

- _  

e K n=I  

= f~ (z,y)d/z.  
¢K 

Now let B + = {(rt,) E c3eK" rl,, = 1/n} and B~ = {01,) E &K" "O. = - 1/n}. 

(ii) r(/~) = x = (~:,) if and only if ~, = (tz(B+,)- tz(B~))/n for all n E N. 

Note  that 

r ( g ) = x C * ( x , y ) = f  (z ,y)d/z ,  for each y E l :  
ja eK 

,~ (x ,e . )  = (z,e.)dlz, 
3a .K  

<=~ ~. = ( t z ( B : ) -  Iz(B:))/n, 

for e a c h n E N  (by( i ) )  

for each n C N. 

Let  A be the set of points (~,) E K such that,  for each, there  exists a finite set 

of indices, nl . . . . .  nN, with Y,~=I (1 - n~l so-, i) --> 2. For  example ,  any (so,) ~ K for 

which X~=~ (1 - n l~:, I) > 2 lies in A. Let  B be the set of points (so,) E K such that, 

for  each, ~, = -+ 1In for  all but  a finite number  of components ,  nl . . . . .  nN, say, for  

which Z~=~ (1 - n,l~, , I ) < 2 .  Note  that 0eK C_ B. We now show 

(iii) A C D ( K ) C  KIB.  
Suppose x = (se,) E A. Without  loss of generali ty,  assume n~ = i, i = 1 . . . . .  N, 

so E L , ( 1 - n I ~ : , I ) > 2  or E L ~ n I ~ , I < N - 2 .  Thus (~1 . . . . .  s%) is divisible in 

K~ = l-I~=l [ - 1 I n ,  l/n] C_ R N, by T h e o r e m  3, hence there  exist mutual ly singular 

Borel  probabil i ty  measures  p,~ and /x~ on 

0,K~ = P = { ( ~ , . . . , ~ N ) E  K,:I~/n I = +- l /n ,  for  n = 1 , . . . ,N} ,  

each with resultant  (SC~,...,S~N). NOW let K2=l-I~=N+t[-1/n, 1/n]Cl2. Since 

(~:N+~, seN+2 . . . .  ) E K~, by the C h o q u e t - B i s h o p - d e  Leeuw theorem we know there  

is a Borel  probabil i ty  measure  /z2 on 0,K2 = O = {(s~.)E K2:sc, = -+ 1/n, for 

n > N}, with resultant  (seN, ~:~+~ . . . .  ). By [7, Theo rems  50.E and 51.E] we know 

B(P)  × B ( Q )  = B ( P  × O), where  B(P)  denotes  the o -a lgebra  of Borel  subsets 

of P. Thus  p, =/z~ ×/~2 and p , ' = / x I  x/*2 are Borel  probabil i ty  measures  on 

P x O = 0,K. It is s t ra ightforward to check,  using (ii), that  r(p,) = r(#') = x and 

also that p, _1_/x'. We conclude that x is a divisible point  of K = K, x K2. 
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Suppose now that x E B. As before we can assume that n~ = i, i = 1 . . . . .  N, so 

X.~=l (1 - n I#, 1) < 2, and also that ~:. = 1/n, say, for n > N. If ix E Z+~(K) we have 

~, = (ix(B+.) - ix(B,))/n = (1 - 2ix(B~))/n = 1/n, 

or ix (B~)=0 ,  for n > N .  Thus i x ( U . > N B ~ ) = 0 ,  or ix is supported by 

(II~=i [ -  1/n, 1/n])x (II,>N{1/n}), a finite dimensional cube. Since 2,~=, n Is~. I > 

N - 2 ,  Z+~(K) must be a singleton, or x~_D(K). 

To illustrate (iii), note that ( ( n - 1 ) / n 2 ) E D ( K ) ,  whereas, for each fixed 

N E N, (~,) E D(K), where ~, = (N - 1)/nN for n _-< N and s~, = 1/n for n > N. 

CONCLUDING REMARKS. In Theorem 2 we showed that if K is a convex 

polytope in R" with m _--- 2n + 2 extreme points, so dim N(K)  = m - (n + 1) => 

n + 1, then D(K)  is the continuous image of a projective space with dimension 

greater than or equal to n. This suggests the following sharpening of Reay's 

conjecture [15, p. 155, Problem 5(b)]. 

CONJECTURE 1. Let K be a convex polytope in R" (n > 1) with m => 2n + 2 

extreme points. Then D ( K ) =  C(K). 

Example 1 and Theorem 3 confirm that for n = 2 and 3, and m = 2n + 2, then 

D(K)  = C(K). 

Using Z~i(K), this problem can be translated into an apparently more 

tractable problem concerning slices through simplexes. Let  T d be the d-simplex, 

where d @ N. 

CONJECTURE 2. Take n E N ,  m = > 2 n + 2  and let M be an m - ( n + l )  

dimensional flat which cuts every facet of T " - '  in other than an extreme point. 

Then M cuts a disjoint pair of faces, each having dimension greater than zero, of 
Tm l 

A sketch of the case where n = 1 and m --4 (a slice through a tetrahedron) 

illuminates this conjecture. That  the validity of the second conjecture implies the 

validity of the first can be seen as follows. Take x E C(K). Recall that 

Z+~(K) = Z( (K)  f3 (ix, + N(K)), with Z~i(K) an (m - 1) dimensional simplex and 

ixx + N(K)  an m - (n + 1) dimensional flat cutting this simplex. Since x E co T 

for each T C_ &K such that I (&K)\T  I = 1, ix~ + N(K)  intersects each facet of 

Z~(K) in other than an extreme point. If Conjecture 2 holds, ix~ + N(K)  

intersects a disjoint pair of faces of dimension greater than zero in Z, (K) ,  so 

x E D(K). 

Finally, it would be interesting to obtain an explicit description of the divisible 

points of the Hilbert cube. 
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